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1. Introduction.

In a recent series of papers ((1981). (1984a), and (19M4)) Bradley Eftmn has suggested a nunterof

methods for constructing confidence intervals for a real valued parameter B using the bootstrap. In

increasing order of generaity, these are the Percentile interval, the Bias Corrected Percentile (BC) interval

* and the Bias Corrected Percentile Acceleration (BC,) interval. Each of these intervals is constructed from

* ~the bootstra distribution of a staiftc 0 .
A

The usual (non-parameltri) bootsrap workcs by samplrig from the emprical dlstfion function Fn-

accordingly. conlidence intervals derived from the bootstra are designedl for non-parametric problems. It

* is difficult, however, to define a Ocoffect' confidence interval in the non-parametric setting and this

* quantity Is needed In order lo measure the performiance of a confidence Interval procedure. Thus to

assess the quaity of the bootstra itervals, Efron moves to a difereW arena, that of one-parameter

famriies. In this setting. one can construct an interval with the desired coverage by Inverting the most

powerful test at each parameter value. Efron takes this exact kIerval as the gold standard and consider

the paramelt versions of the bootstrap intervals, that is, those obtained from the aparametrice bootstrap
A

(sampling from the parametric m.1. Instead of Pe'). Elton shows that the most general of these iritervals,

* the BC, iinterval, is second order correct; that is, its endpoints differ from t exact interval by OpLl/ n).
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This provides a strong justification for the BCa interval. Standard confidence intervals of the form,-1

p

A.
differ from the exact interval by O1(l/ nl 2 ). (In the above, y is an estimate of the standard deviation of 6).
The O(1 ln 1/2) term can cause the exact interval to be asymmetric, an effect picked up by the BC a interval

but not by the standard intervals or by studentized intervals, both of which are symmetric by definition.

While Efron does not show that the non-parametric BC a interval is second order correct, he hypothesizes

that given a reasonable definition of this notion, it will bt.'

Underlying the BC a interval is a transformation of the problem to a Normal Scaled Translation Family

(Efron (1982)) of the form +(l+ae)Z where Z is a N(0,1) random variable. Although computation of the

BC a interval doesn't require specification of this transformation, Efron shows that a) if such a p.

transformation exists, the BC a interval equals the exact interval, and b) the BC a interval is second order

correct in any one paiameter problem, so that loosely speaking, to second order, such a transformation

always exists. ,

In this paper we show how to construct this transformation in general. It turns out to be a variance

stabilizing transformation followed by a skewness reducing transformation. This construction produces

the following benefits: 1) it sheds right on how the BCa interval works and 2) produces a new interval, (we

call it the "BC, 0 - interval) equal to the BC, interval (to 2nd order) which can be computed without

bootstrap sampling. We also derive from (2) a second order approximation to the bootstrap distribution of

the statistic that doesn't require bootstrap samping. Both the new interval and the approximation require

only n+2 evaluations of the statistic. The transformation generalizes the one constructed by Efron

(1984b. section 10) for translation families.

The layout of this paper is as follows. In section 2 we concentrate on one parameter problems. We

review the BC, interval and its relation to the exact interval. The BCa 0 interval is defined and shown to

equal (to second order) the BC, interval. Some numerical examples are given. In section 3 we discuss

confidence intervals for multiparameter problems, and section 4 focusses on the non-parametric problem.

2
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We show how the BCa0 interval can be computed without bootstrap sampling and give a number of

examples. Section 5 shows how the bootstrap disribution of a statistic can be approximated using the

tools developed earlier. Finally, in section 6 we provide proofs of the results quoted throughout.

2. Confidence Intervals for One Parameter Problems. p.

2.1 The Bootstrap Method

We begin with a statement of the bootstrap method. The notation in this paper will follow that of Efron

(1984b) as closely as possible.

Let ym(x1 x2...xn) represent the available data with each xi assumed to be an independent realization

from an unknown probability distribution F . Here q is the parameter vector and the parameter of interest

is some functional 0-t(F ). We have a point estimate 0,,t(F.) where F., is some estimate of F., and would

like a confidence interval for 0. The bootstrap method works by resampling from There are three

A
distinct resampling strategies depending on the choice of F,,:

1) One parameter problems. Here we assume that 8 is the only unknown parameter, so that each xi has
distribution F9. Resampling is done from Fg where 0 is typically the maximum likelihood estimate of 0. This
is known as the 'parametric bootstrap*.

2) Multiparameter problems. We take Tl equal to the maximum likelihood estimate of 'T and resample from
Fi. This is a multiparameter parametric bootstrap.

3) Non-parametric problems. F. can be any distribution, so we estimate it by the empirical distribution

function Pn, the non-parametric maximum likelihood estimator of F. Resampring from n is equivalent to
sampling with replacement from the original data x1 ,x2 ,...x n. This is the usual (non-parametric) bootstrap.

-."

*°
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2.2 The BCa Interval.

Efron's BCa interval uses bootstrap sampling to construct an approximate 1-2cz confidence interval for

0. Depending on the choice of F' in steps a) and b) of the following algorithm, the intervals will apply to

situations 1), 2) or 3). The BCa interval is computed as follows:

A
a) Bootstrap data sets Yl" Y.. yB a created by resampling from F".

b) For each yb°. b-1,2....B, the bootstrap estimate °-t(F )is calculated, where F. is the estimate of F

based on Yb*•

c) The bootstrap distnbution of the b values is constructed.

G(s) a (&)o<s)/B (2.1)

d) The bias correction

z'40 A4.~3~ (2.2) -

*, is computed, 4(.) being the cdf of the standard normal.

e) The acceleration constant a is computed (details later).
f) The BCa interval is thengiven by

(,oo all, G7(0(2(1-lll] (2-3)

where zo.]-Zo+(zO+z(O)y (1-a(z0+z())) and z(OU= - 1 (a).

We note that when a-0, (2.3) reduces to Efron's BC (Bias-corrected) percentile interval, and if also z.O0,

then (2.3) is simply [&1(ct),G-'(1)1-a% the percentile interval.
.SFor the remainder of this section, we wit be discussing the parametric BC a interval, that is, with F,,F- .

Sections 3 and 4 will discuss the multiparameter parametric BCa and the non-parametric BCa respectively.

.. ,
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Where does the complicated looking formula (2.3) come from? Recall that standard confidence

intervals (1.1) are based on the assumption

N (o,1) (2.4)

The BCa interval is based on a more general assumption:

A

g(0) - :z1+ ag) 2  (25)

where g(.) is a monotone transformation, In (2.4) it is assumed that on the given scale, the

standardized statistic is normal with constant variance. In (2.5), we only assume that on some transformed

scale, the standardized statistic is normal, possibly with some bias and possibly with a standard deviation

changing linearly with the parameter. Efron proves two facts about the BCa interval:

1) If (2.5) holds for some g(.), then the BCa interval is correct.

2) For any one parameter problem, the BCa interval is second order correct. This means roughly that any

one parameter problem can be approximately put in form (2.5).

Here's in more detail what's meant by 1) and 2). One can show that if (2.5) holds then the problem can be

further transformed into a translation problem. The transformation used is h(t)-(1/ a)log(l+at). The

transformed problem is

A7

€- ¢~+W ,,
~~where

, - I0/ a) logll + ag(e))..

wr (1/ a) bg(1 + ag(8))

W- (1/a) log(1 + a(Z-zo)) (2.6)

~5
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Z being a N(0,1) random variable. On the scale an "exact' interval can be constructed by inverting the %

A

pivotal - . Transforming back to the g(.) scale then gives the BCa interval. This is the meaning of 1). Fact

2) refers to a comparison of the BCa interval with the exact interval for any one parameter problem. If we are

in a one-parameter problem, then the statistic 9 has a distribution depending only on 0, say f1. Now

suppose that the 100(1-a)th percentile of 0 as a function of 0, say 0(a), is a continuously increasing

function of 0 for any fixed .. Then the usual exact confidence interval (constructed by inverting the size ..

a most powerful test at each 0) is (0,[a.l,0qx[1 -a]) where 0ex[a] is the value of 0 satisfying 0(a)-e. Then

Efron shows

racaC4 - %x ao
- O1/n) (2.7)A

where GBCa[aj is the endpoint of the BC, Interval. By comparison, the endpoints of the standard interval

(1.1) differ from the exact ones by O,(n-1/2).

What makes the BCa interval attractive is that one doesnt need to know the transformation g(.) to

construct the interval! Looking back at (2.3), we see that 3 things are needed: the bootstrap distnbution of

0 (G), the bias constant z0 and the acceleration constant a. As mentioned earlier the bias term z0 is

estimated by 4b-1(P(9 -c 9)). Note that P(g(80) < g(911- P(" < 0) for any monotone g(.) so bias is

transformation invariant It turns out that z0 is typically O.(n-1 '2 ).

We have still to discuss the acceleration constant a. From (2.5) we see that a measures how fast the

standard deviation of gr) is changing with respect to g(G). Like zO, a is typically Op(n-112 ). Efron shows

that a can be estimated by

a (2.8)
6

6 ,
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Here 19(0).d/ do (log re) evaluated at e= and SKEW9, (Z) represents the skewness of the random

variable Z under the distribution governed by 0=. As is the case with the other two components.

computation of (2.8) doesn't require knowledge of g(.). It can be cormputed analytically for some simple ,

cases and requires parametric bootstrap calculations in general. Note also that because the likelihood is

invariant under monotone reparametrizations so is the right hand side of (2.8).

2.3 Example 1.

Table 1 illustrates the exact, standard and bootstrap confidence intervals for a familiar problem. The

data x1 , x2 ,...x, are i.i.d N(0,1). The parameter of interest is e=Var(xi). Level 1-2a confidence intervals are

to be based on the unbiassed estimate - _(xi--) 2/ (n-1). The sample size n was taken to be 20 and -

a.,.05. The exact interval is based on inverting the pivotal 8 / e around its chi-squared (n-i) distribution.

AA
The standard interval (fine 2) is of the form (1.1) with .- 8 (2/n)l 2 the estimated asymptotic standard error

of 6. The BCa interval (line 5) is based on formula (2.5). The BC interval (line 4) is based on (2.5) with a

equal to 0 and the percentile interval (line 3) has a and z0 equal to 0. The bootstrapping was performed

parametrically, that is, resarmpling was done from N(0,0). The remaining lines are discussed in section 4.

The lower and upper values in Table I refer to averages over 300 monte carlo simulations of the intervals.

The level column indicates the proportion of trials in which each interval didn't contain the true value 9=1.

Table 1
Confidence intervals for the variance

Average Av~e~e Iee (.)
, LOAe Uppe ,

(1) Exact .630 1.878 10.0
(2) Standard .466 1.531 11.0

I (3) Percentile .520 1.585 10.7
(4) BC .578 1.670 10.7

Parametric (5) BCa .628 1.860 9.7
(6) BCa 8  .629 1.877 10.0
(7) Percentile .484 1.363 24.3

Non (8) BC .592 1.467 19.3
Parametric (9) BCa .617 1.524 19.3

(10) BC. 0  .. 633 1.540 18.7

7



Of the intervals (1)- (5), only the BCa interval captures the assymetry of the exact interval. The standard

interval (2) undercovers on the right but overcovers on the left so the overall level is about right. This

illustrates why coverage alone is not a good way to assess confidence intervals. Efron (1984b) also

considers this example and shows that to a high order of approximation one can transform the problem

into form (2.5) with z0 -. 1082 and a-(1/6)(8/19) 1/ 2 .1081. Hence it is not surprising that the percentile

* and BC intervals perform poorly because the bias and acceleration components are non-negligible.

Remarks.

a) Efron begins by assuming that only 0 has been observed, having density f. Bootstrap values " are

generated from f;. We have assumed that a data vector y has been observed but confidence intervals will

be based on ly on the m.I.e. 0. The two notions are equivalent and it is easy to see that the distribution of

" for y *- F6 is ft. By starting with the data vector y , the one-parameter, multi-parameter and non-

parametric problems can all be presented in a unified fashion.

b). Let Iv(e) be the log likelihood for 0 based on y. Then as Efron notes ( Remark F), ly(e) could be

used in place of l(O ) in the formula for a for their skewnesses differ by only Op( 1I/n). The formula based

on Iv(O) will sometimes be easier to compute in the one-parameter case and is used in the multi-

parameter and non-parametric problems in Sections 3 and 4.

2.4 A different view of the BC, Interval: the BC,0 Interval.

It seems that the computation of the bootstrap distribution G alleviates the need to know g(.), yet the

second order correctness of the BCa interval suggests that a g(.) always exists approximately satisfying

(2.5). Indeed this is the case as we will show in this section.

8
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Let IV(G) be the log likelihood for e based on y. Let 'c2 (e)=E(d 2 lv(8) /d82) be the expected Fisher
AA

information fore0 and let aA (K2(0)11/2. Then the variance stabilizing transformation for 0is g1 (G) where

Let gA(s)-(eAs-1)/ A, a skewness reducing transformation for strategically chosen A. And finally let

*g(t)-gA(gi(t)). Then the following theorem asserts that this g(.) puts any one parameter problem into

* approximately form (2.5).

Theorem 2.1

if 9-fe, and g(t) is as defined above, then with regularity conditions on the derivatives of the log-

likelihood,

Var (g(5)- g(e)) - (I1 #A 9()) +O(rr1) V

* Furthermore, if A- SKEW6.((G))/ 6, then

SKW (g~kj) -~ 1)

What use is theorem 2.1 ? For one, it enables us to construct a confidence interval on the original 6 scale.

* For simpliity, choose c in (2.9) so that g 1 (0)- and hence g(6)-O. If (2.5) holds, then Efron shows that the

endpoints of the correct interval on the g-scale are

g()+ 11 + agGj (Z1O)

91a(oz0)



which equals (z+()) 1a(z0 +z(a)) since g(e)=O. The corresponding endpoints on the 8 scalo3 are thus r

(z0 + i(C

-a IZ +Z 1)P

We will call this interval the BCa0 interval and denote its endpoints bYeBCaO [a]. Given theorem 2.1, it is

not surprising that the endpoints of BCa 0 and BCa agree up to pn1)

* Theorem 2.2I

aA - OP(rr')I

Together with Ef ran's result (5.4), it also establishes the second order correctness of the BO interval.

Note that the BCa0 interval, like the 8 0 a interval, maps in the obvious way under reparametrizationI

because the vauiance stabilizing transformation also maps correctly.

* 2.5 Example 1 continued.

Line 6 in Table 1 shows the results of the BC a0 irterval applied to the variance problem- The overall

results are very similar to the 60 a nun-h~ers arnd on an Vvidkual basis the BC a0 and the BCa intervals were

very close. We used the values z0-.1082 and a-(1/6)(8/19) 112 .1081 computed analytically by Etron.

* The transformation g, (s) works out to [(n-1)1 2J1121og(s) and hence g(s)-g(g 1 (t))wkl tC+k 2 where c- [(n-1)/

21/a- 1/3. Thus the procedure has reproduced the Wilson-Hitferty cube root transformation. El ron

(1 984b. Remark E) makes a similar calculation.

10
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2.6. Example 2. The correlation coefficient.

As a second example we consider the correlation coefficient problem discussed in Efron and Hinkley

(1977). The data (xi,Yj) are i.i.d bivariate normal with means 0, variance 1 and correlation 6. We will base .""
9%"

central 90% confidence intervals for 6 on the m.l.e 9. Note that the sample correlation

p-IXiyi / (,x 1
2 .yi 2 )112 is not the m.l.e. Standard calculations show 2--(l/ 3)(0(3+02))/ [nl 2 (1+02)3/ 2].

We will consider the case n-15, 0-.9 for which a--.12119. Table 2 shows the results of 300 monte carlo

runs for a number of intervals.

Table 2
Results for correlation coefficient example. 'I

Average Average Level (%)
LOW upper.

Standard .816 .954 7.0
(based on p)

Standard .757 .958 7.3
(basqd ontarr 1 (p))

Percentile .761 .930 18.0
BC .742 .922 23.3
B a  .701 .914 29.3

BCa0  .763 .931 14.0

The first two intervals are based on the sample correlation coefficient (using the observed Fisher

information for the variance). The second interval was obtained by transforming by tanh "1, computing the
A

interval, then transforming back. The bootstrap intervals are all based on e and parametric bootstrap

sampling. The variance stabilizing transformation turns out to be

gl (e) - n 1 {tanh 1 [2' 20/(1+02)L'2 ] .l(1+.2)l} (2.12)

11



The results are surprising. The BC and BCa intervals seem to pull percentile interval in the wrong direction

and hence the coverage gets worse. The BCa 0 interval performs quite well and seems to agree with the

interval based on the tanh "1 transformation.

2.7 More on the transformations.

Recall the discussion of the BC, interval in section A monotone transformation g(.) that mapped the

problem into the form g(6)-g(e) - N(-z 0 .(+ag(8)) 2) was assumed to exist. Let 0=g() and $=g(e). Once the

problem was mapped to the scale, the transformation (11 a) log(l+at) was used to further map the

problem into a translation family and thereby obtain an exact confidence interval. The two transformations

were then inverted to produce the desired interval on the 6 scale. This is summarized in Figure 1.

Figure 1.

Transformations Implicitly used by
the BCa interval

g -e (1/a)bog1+ag())

"i(')-N(-z0.(1+a)) ;+(l .{/a)k11+a(Z-zJ))

The BCa procedure automatically achieves this working only on the e scale with no knowledge of g(.). The

BCa0 interval, on the other hand, gives an explicit construction for g(.), namely g(t)-gl (ga(t)) where

gI(t)=Jt [ic2(u)]I 2du and ga(t)=(eaLl)/ a. Notice that the transformation (eat-l. a is just the inverse of the

transformation (1/ a)log(l+at). Hence we have a simpler description of the intervals: the transformation
A

g1(t) is used to map the problem into the translation form ;- +(I/ a)log(l+a(Z-z0)). The BCaO procedure

computes g, (t) explicitly while the the BC, procedure avoids computation of g, (t) through use of the
A

bootstrap distribution G.

12
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3. Confidence Intervals In multiparameter problems.
p.

In section 2 we concentrated on one-parameter problems although early on we discussed the
'p

multiparameter parametric bootstrap. Here we will briefly describe the extension of the BCa and BCa0

intervals to multiparameter problems. The main purpose of the discussion will be to provide a framework

for the non-parametric problem addressed in the next section.

Suppose that our unknown probability mechanism is F., where -q is a k dimensional parameter.

Denote the (real-valued) parameter of interest by 8-t(il). In order to apply the confidence interval

procedures of section 2, we must first reduce the problem to a one-parameter problem. We will follow

Efron and utilize Stein's least favourable family for this purpose.

Denote the density of F,1 by f.and let the m.Le of -q be "'. Let I, be the k by k matrix with iith entry

-(d2 / d jdh ) log f, evaluated at -q1q. Let V be the gradient vector of 0,t(T) evaluated at i,

A
Vi=(d/ drii) t(i})I -1. The least favourable direction through q is defined to be

o V (3.1) I

A
The least favourable family F is the one-dimensional subfamily of F, passing through TI in the direction g:

F: j (3.

Note that 7 and .are fixed, and X is the parameter of the family. Why is this family called least favourable?

Roughly speaking, this family points in the direction that B is changing fastest in the information metric

(1 )-1. More formally, consider estimation of 0(;l-t(q+)4) in the fanily f+ ;L One can show that observed

Fisher information for 0(X) in this problem is the same as that for 8-t( ) in the original k dimensional

problem. Furthermore, any other subfamily has a greater Fisher information for e. In this asymptotic sense
5,-

the reduction of the full family to the least favourable family is the only reduction in which estimation of 6 is

not made artificially easier. Figure 2 illustrates the least favourable family.

13
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Figure 2.
Steins least favourable family %
Tin ml.e, 0- t(ftj, C8 -(n I t(T)0e).

the level surface of constant 8

ter.

Por'amet eq
Space

* Tibshirani and Wasserman (1985) and Diciccso and Tlbshirani (1985) show that the least favourable

family passes through in the same direction as the profile likelihood and also that the two famnilies differ

by only 0,(1/n).

* Given this reduction we can now apply the BCa method, acting as W our problem is the one parameter

problem 4+4. The algonithmn of section 2.2 can be used with resarnpling performed parametricaly from

the ml.e F,,% (corresponding to the one dimensional m~le X.-0). The bias constant zo is estimated by

G. (0()) as before. The acceleration constant a will be different than before, however. it will involve the

skewness of the log-lielihood in the least favourable family:

* 6
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Except for some simple cases, estimation of a will require bootstrap computations. Fortunately, an explicit

formula for a will be available in the non-parametric case (next section).

rhe BCa0 method can also be used in this setting. Its definition is much the same as before. Here we

usiigl(t) - c Jt[K2 Lju)J1' 2du- where icjju) is the expected Fisher information for/in the family fA+*.and

ga(t)-(ea1 )I a as before. Using forrmula (3.3) for a and z0 -01 (G(8)) we obtain an interval (Xk. X) for X.

Finally this gives anl Interval for 0 through the relationship G(;-t(j44*). Note that g1 (t) will be difficult to

* calculate in general but like a. kt is easily corrVued in the non-parametric case.

Wehv osrce h BaadB. nevl for multiparameter problems by extending the one-

parameter definition to the least favourable family. To justify their use we need to show that in some sense

they are second order correct. It burns out that a "correct* Interval is difficult to define; instead, we can

resort to the weaker requirement that each of the Intervals err in their coverage only by 0,(1/ n). Formally,

* and similarly for OMcl] We conjecture this result and also

0 -o 0 C a Oarrl) (3.5)

but so far we have been unable to proof these conjectures-

15
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4. Non-parametric problems.

If we were to approach the non-parametric problem in its most general formn we would have to consider

all possible distributions F,,, that is, let ij be infinite dimensional. This would obviously be infeasible.

Following Efron, we simplify the problem substantially by assuming that Fhas support only on the

observed data x1 .x2 .... xn. This makes the problem finite dimensiona and the approach of section 3 can be

used.

Consider the data x1,x2,...xn to be fixed and let 1i - log(Prob(Xmxi)), lI,2,.... n. We can describe any

realization from F~ by P. where Pj - #{Xk-xj/ n. Then F;- is a rescaled multinomial distribution, that is P

-Mult(n,eA)/ n. The observed sample gives rise to qj- log(PO) where PO_(II n,11 n,...11 n)t and hence F

-Muht(n,P 0)I n. The least favourable famnily through TI turns out to be P*- Mult(n,w ).)/ n, where

weL/AEeU and

* (See Efron 1984b, section 7). Here BI is a point mass at xi and the Uj are called the empirical influence

components of Gut(Fn).

We now have almost al we need to compute the BCa interval for the non-parametric case. Resamping

is done from F~l. Muft(n,P0)/ n and this is equivalent to sampling with replacement from xIA ,x.... xn. The

bias constant Is estimated as O01 (G(O)) as before. We require only an estimate of the acceleration a.

*Applying formula (3.3) to the nuaftinomnial famnily gives

.Ui3
a- (44
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Table 1 line 9 shows the results of the non-parametric BC, interval applied to the variance problem. it

outperforms the (non-parametric) percentile and bias-corrected percentile intervals but doesn't fully

* capture the assymetry of the exact interval. This is due to the short tails of the bootstrap distribution of A.

The BCa0 interval can also be used here. The transformnation g1 (t)-cl t 11c2 X(S)1112ds requires an

* estimate of the expected Fisher information 1C21(s) for the muttinomnial subfamily (4.1). Straightforward

* calculations show that

-2s n )42Ujs/lp~s - 4et-s/D.at.)] (4.3)

A simple numerical integration (like the trapezoid rule) can then be used to compute g,(tQ. Note that kO~)

is a non-negative function by Jensen's inequality and is in fact positive unless all the U is are equal. Hence

g I(t) will be monotone increasing and invertible.

Line 10 of Table 1 shows the results of the BC. 0 procedure applied to the variance problem. As in 7

the paramet case the results were very similar on an interval to interval basis to the BC, results.

Actually, computation of the BCa0 intervals doesn't even require bootstrap sampling! The only

component of the procedure that seems to require it is the estimation of zo. But Efron (1984b section 7)

provides an approximation for zo based on first and second order empirical influences. Let V be the n by n

* matrix of second order influences. define zOi.(1/ 6)7,U,3/ [Y'U,2131 2 (the approximation for a) and let

zo2.UtVU/ IUI12 - trace(V I/ 2njUII2. Then a good approximation for z0 is

-O 4 10(*)4(yb)) Lt)

Using the following method due to Tom Hesterberg of Stanford. Z02 can be computed with only 2

* additional evaluations of the statistic.Let U(i.E) equal the expression in the right hand side of (4.1) for some

small positive e . Let D(i,E) -U(i,c-) - U(e) where U(e) is the mean of the U(i.e) 's. It is easy to show that

trace(V)- 2Z U(1.E). Using the notation 8 (P) to denote e--t(F) evaluated for the distribution F putting

mass P*on x, (see e.g. Efron 1981). one can also show that UtVU -[0( P0 +EU)- 0( P0 -EU)-20( p0)j IC2.

17
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Thus a total of n+2 evaluations of the statistic are required to compute a and z0 . Note however that (4.4) is

only an approximation; Hesterberg is presently studying its accuracy.

If the BCa and BCa0 intervals can be shown to be second order correct, then they will also be second

order correct in the non-parametric setting, if it is assumed that the number of categories in the support of

the multinomial stays fixed as n goes to infinity. Combined with the assumption that the support of the

distribution is confined to x1, x2 ... xn, this is a less than ideal definition on 'non-parametric second order

correctness". We are currently looking at ways of making it more realistic.

Example 3. The Proportional Hazards model.

For illustration we applied these methods to the proportional hazards model of Cox (1972). The data

we chose was mouse leukemia data analysed by Cox in that paper. It consists of the survival times (yi) in

weeks of mice in two groups (xi), control (0) and treatment (1), as well as a censoring indicator (Sj). The

partial likelihood estimator was 1.51. We applied the confidence Interval procedures by considering

(Yi. xi Si) as the sampling unit. Estimation of the BCa 0 interval requires writing the statistic as a functional

statistic- not necessary for the BC interval because it only evaluates the statistic on bootstrap samples.

We define the partial likelihood estimator for sample weights w ,(w), as the maximizer of

(4.5)

where D is the set indices of the failure times, Ri Is the set of indices of the items at risk before the ith failure

and each of the sums is over the items failing at the th failure time. This definition is found in Tibshirani

(1984). Finally, U and V were computed by substituting e-I/ (n+1) into their definitions . Table 3 shows

the results of the various non-parametric confidence procedures.

18
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Table 3
Confidence intervals for

Proportional hazards examp~le

Standard (.84,2.18)
Percentile (.93,2.34)

BC (.96,2.36
BCa (.75,.15)
BCao (117,2.03)

* Interestingly, the percentile and BC intervals shifted the standard interval to the right, but the negative

* acceleration (a.-.152) caused the BCa and BCaO intervals to shiffback to the left. The BCa0 is also

somewhat shorter than the BCa interval.

19.
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5. Approximating the bootstrap distribution of a statistic.

The results of sections 2 and 3 show (and conjecture) respectively, that

G-1(2JoJ (4cJ=ZO+ (~1~

and

g-1 [(z ( )41-a (ZoOa))1 (5.1)

A

differ by only Op(n -1). We can use this to estimate G_1 (p) (for any p), without bootstrap sampling, as follows. I

First we find z(1) such that p-z[, i.e. z(a) -pt (1+ap) -zo. Then we substitute this into (5.1) and thus get an

approximation to

2,

If instead we want a density that closely approximates the bootstrap histogram, we recall that
A

g(O)-g(l)+a(Z-zo) where Z is a N(O,1) random variable. Hence a good approximating density is the density

of g-1 (g(G)+a(Zzo)). After a rtle algebra this can be expressed as

Xs) , V[(eMlS)-ll /a +z1 e(s)a (( s)l2 (52)

- %-

where V is the density function of N(0,1). In the non-parametric case, (5.2) gives the density of , and

must be gmltiplied by d1L dO - N k2;" (s) to obtain the density for 0.

.* 5
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For the Cox model example, Figure 3 shows a histogram of 1000 bootstrap values along with the

approximating density j(s) (renormalized) and Table 4 shows the approximation based on (S2). In both

. cases the agreement is quite good.

Figure 3
Bootstrap histogram and

approximation based on (1.2)

I1.?

* density

I.'i

..

I~z '.5'

Tale 4.
Approximations to G-1 (p)

A oo Formua
p 8-1000 (9-1)

.025 0.80 0.86

.05 0.92 0.93

.10 1.04 1.04

.25 1.25 1.27

.50 1.53 1.52
.75 1.80 1.77
.90 2.34 2.24
.975 2.47 2.47
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This approximating procedure can be thought of as a refinement of the usual central limit theorem
A A '

approximation N(e. k2(e)1), correct to order n-112 . The new approximation

AIN (g(G) - o1. ag(0))2  (5.4)

incorporates three order n- 1/2 components: g(.), z0 and a. In a parametric setting, (5.2) could prove to be

a useful alternative to an edgeworth expansion. It has two distinct advantages over edgeworth

expansions: 1) i is always non-negative because g(.) is monotone increasing and 2) it is computable

(albeit not often by hand) for general first order efficient statistics 0.

The reason that this procedure works in the non-parametric setting is that asymptotically, one has only

to look at the bootstrap distribution of 0* projected onto U in order to compute G(.). It is easy to check

that a ( formula 4.2) equals the skewness of P't U and that z0 takes into account both this skewness and

* the curvature of the level surfaces near PO. I1.'

2.2
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6. Proofs of theorems 2.1 and 2.2.

Suppose that the parameter e has been resealed to be of order n112 as in Efron't (1984b) expression 1

* (4.5). Assume also the regularity conditions in Efrons (4.4). Consider now

*-g(G)=(e~e- 1) /A (6.1)Z

* where A is understood to be a constant of order n-11. Yhen

*--(eteh6)(eAJi) (6.2)

and from the moments of O-e (see for examp~le Welch 1965) it can be shown that

E(-4) -(1/2)neA [(2ic1 i+rooOl nl' 2+N "c2 +O(r2)]

va - neP (1/ (rr )

y, (4. (31c 1+yl IC21 2 +3An1/2iC2
1f2 +O(rr1)

4)- C(rr) (6.3)

where yj and -2 skewness and excess in kurtosis and the ic's are as defined in DiCiccio (1984). Ht the

* choice

A (1/3) (3 ic 1 2 o)I(n 3) (6-4)
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is made, then yi(0- 0) is 0,(n1). By the relations attributed to Bartlett, ic3+3xl I +icO1 .0 and x3.2) 1coI+ic2,

it follows that if 0 is the variance stablized parameter with K2 '1 , then

A .m(1/6)(Kc3 /x? 2 - (1/6)(K 3In
1 2  (6.5)

and

A

E - -zO. 0rr~)

var(O - *)=e~l+Orr')

A"

T_0- 0rr") (6.6)

*Thus 40 is, to second order, normally distributed with mean -zo and standard deviation eAO=1 +A4,.

* Although x3 at the true value 0 is unknown, K3(G) may be used in its place for the calculation of A, without

* altering the orders of the preceding error terms. This establishes theorem (2.1). Theorem (2.2) then

*follows immediately from Efmrfs (11.3). In fadt (11.3) holds exactly for esco~aj.

Acknowledgements

* We would like to thank Larry Wasserman for valuable discussions on profile likelihood and the non-

- pararmetric problem. Timothy Hesterberg for his z0 formula and Bradley Efron whose research and

- encouragement stimulated this work.

24



REFERENCES

Cox, D.R. (1972). Regression models and life tables. J. R. Statist. Soc. B. 34, 187-202.

DiCiccio, T. J. (1984) On parameter.transformations and interval estimation. Biometnka 71, 3, 477- 485.

DiCiccio, T.J. and Tibshirani, R. (1985). Likelihood and least favourable families. In preparation.

Efron, B, and Hinkley, D. (1978). Assessing the accuracy of the maximum likelihood estimator: Observed

versus expected Fisher Information (with comments). Biometrika 65, 457-487.

Efron, B. (1981). Non-parametric standard errors and confidence intervals. (with discussion). Can. J.

Stat. 9, 139- 172.

Efron, B. (1982). Transformation theory: how normal is a one-parameter family of distnbutions? Annals.

Stat. 10, 323-339.

Efron, B. (1 984a. Bootstrap confidence intervals for parametric problems. To appear, Biometnka.

Efron, B. (1984b). Better bootstrap confidence intervals. Tech. rep 14, Dept. of Statistics, Stanford

Univers4ty.

Stein, C. (1956). Efficient non-parametric estimation and testing. Proc. 3rd Berkeley Symp. 187-196.

Tibshirani, R. (11984). Local likelihood estimation. Tech. rep 97, Dept of Statistics, Stanford University.

Tbshirani, R, and Wasserman, L (1985). A note on profile liefood, least favourable families and

Kullback-Lelbfer distance. Dept of Statistics Tech. rep 006, University of Toronto.

. Welch, B.L (1965). On comparisons between confidence point procedures in the case of a single

parameter. J .R. Statist. Soc. B, 27, 1-8.

25



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (1W0%e Data Xnteo40

REPORT DOCUMENTATION PAGE REA CMSTRUCnONSBEFORE COMPLE"TrNG FORM
1REPORT NUMBER GOVT ACCESSIO; NO 3. RECIPIENT'S CATALOG NUMBER

375 A__
4. TITLE (and Subtitle) S. TYPE OF REPORT A PERIOD COVERED

Bootstrap Confidence Intervals and TECHNICAL REPORT

Bootstrap Approximations S. PERFORMING ORG. REPORT NUMBER

7. AuTHOR(*) IS. CONTRACT OR GRANT NUMBER(s)

Thomas DiCiccio and Robert Tibshirani N00014-86-K-0156

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA 4 WORK UNIT NUMBERS
Department of Statistics
Stanford University NR-042-267

Stanford, CA 94305

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research June 4, 1986

Statistics & Probability Program Code 1111- IS. NUMBER OF PAGES

28
14. MONITORING AGENCY NAME & AOORESS(I different from Controlling Office) IS. SECURITY CLASS. (of thia report)

UNCLASSIFIED

ISa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. OISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of te abstract emtered In Bock 20, It dJfernt trm Reopro)

IS. SUPPLEMENTARY NOTES

1. KEY WOROS (Coninudon reverse aide It necoosaCa mod Identff by block ambe,)

Bootstrap Approximations, Bootstrap Confidence Intervals,

Scaled Transformation Families.

20. ABSTRACT (Coltinue an reverse aide It neceeary ind Identify by block number)

PLEASE SEE FOLLOWING PAGE.

DD jA7, 1473 EDITION OF I NOV 6S IS OBSOLETE U SDOS/N 0o10-o014- 6601 UNCLASSIFIED
26 SECURITY CLASSIFICATION OF THIS PAGE (When Da n te.d)

~~~~~~~~~~~~~~~~~~~~. . .. . .... .. . .. . ....... . ......... ...'-' .. -- ".- .- - -. ' "- "-.i ".,
" "" ." " """",".:-',' " '. , ,": " ;, i' 

: - -
" "'o"" ', ' " ' ."" ." J

°'
" :'. . . .- . " '"



SU... CLASSIFIED
$u9CAstV CLAMIFICATION OF TWOI 0ASU (h "411 AI"

TECHNICAL REPORT NO. 375

20. ABSTRACT

-We study the "BCa" bootstrap procedure (Efron 1984) for constructing

parametric and non-parametric confidence intervals. The BC interval relies
a

on the existence of a transformation that maps the problem into a "normal

scaled transformation family". We show how to construct this tranformation in

general. Exploiting this, we derive an interval that equals the BC4 interval

to second order, computable without bootstrap sampling. As a further benefit,

this construction provides a second order correct approximation to the bootstrap

distribution of a statistic, computed without bootstrap sampling. Both the new

interval and the approximation require only n+2 evaluations of the statistic,

where n is the sample size.

27 U'NOASSIFTEDi
&Ccu.,:ty ;ASPCTO, OF. THS AO. ,- DOI&* RA-**, -:

9' " " " 
"  

' " . .- .. . . . . . """

i i mS| iI i d i I d -- [ i " /] -- " ] -q4.



I..

'p

tUrn-
i

4
.1
4


